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Domain Number Distribution in the Nonequilibrium
Ising Model
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We study domain distributions in the one-dimensional Ising model subject to
zero-temperature Glauber and Kawasaki dynamics. The survival probability of
a domain, S(¢) ~¢~¥, and an unreacted domain, Q,(7)~ ¢~%, are characterized
by two independent nontrivial exponents. We develop an independent interval
approximation that provides close estimates for many characteristics of the
domain length and number distributions including the scaling exponents.

KEY WORDS: Coarsening; kinetic Ising model; Potts model; scaling; per-
sistence.

I. INTRODUCTION

The theory of phase ordering kinetics, or domain coarsening, has under-
gone a rapid development in recent years.!) It has been established that
systems quenched from a homogeneous high-temperature disordered state
to a low-temperature multi-phase state do not order instantaneously;
instead, domains of equilibrium ordered phases form and grow with time
as the system approaches local equilibrium on larger and larger scales.
Generally, a scale-invariant morphology is developed at late times, and
the network of domains is (statistically) independent of time when lengths
are resealed by a single characteristic length scale L(z), the typical domain
size. This length scale exhibits an algebraic growth with time, L(z)~¢"
However, it was recently realized that additional scaling laws characterized
by nontrivial scaling exponents exist in such systems. Examples for such
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decay modes are the autocorrelation function, 4(L) ~ L~*? and the frac-
tion of the system still frozen in its initial state, Po(1) ~t=%.3% The latter
“persistence” probability has since been investigated theoretically® 51!
and experimentally!?) in spin systems, interacting particles systems,® 13-16)
Lotka-Volterra models,!” ') breath figures growth,"® foams,®® and even
simple diffusion. (! 22)

Similar to the domain growth exponent, v, these additional exponents
are sensitive to the nonequilibrium dynamics followed by the system, and
thus are fundamentally different from their equilibrium counterparts.
Precisely how many independent hidden exponents does a coarsening
system possesses remains an open question. In this study, we establish that
at least in one-dimension, additional exponents describe the survival
probability and other more subtle statistical properties of domains. We
examine systems with short-range interactions described by a scalar order
parameter, namely the 1D T =0 Ising model®® evolving according to non-
conserved Glauber dynamics'*® and conserved Kawasaki dynamics.®®

This paper is organized as follows. We first define the domain number
distribution in Section I1. In the following section, we review our results for
Glauber spin-flip dynamics where we develop and solve analytically an
Independent Interval Approximation (IIA) that assumes no correlations
between adjacent domains. The ITA predictions compare well with Monte
Carlo simulations by giving a correct description of the domain statistics as
well as good estimates for the underlying exponents. In Section IV we show
that nontrivial exponents underly the zero temperature limit of the 1D
Ising model with Kawasaki spin-exchange dynamics as well. The 11A, when
carefully modified to conserved dynamics, turns out to be equally useful in
this case. Summary and conclusions are given in Section IV.

Il. DOMAIN NUMBER DISTRIBUTION

Although we focus in this study on the Ising model, the statistical
properties of domains we are concerned with are relevant to arbitrary
coarsening processes in one spatial dimension. For example, we ask, what
is the domain survival probability S(¢) i.e., the probability that a domain,
initially present at the system at time r=0 is still present at time ¢ (see
Fig. 1). We will present theoretical and numerical evidence supporting an
algebraic long time decay of this survival probability,

S(t)y~t¥ (1)

Such a behavior is robust, as the exponent ¥ is not sensitive to the initial
state of the system (provided long ranged correlations are absent). Our
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Fig. 1. Domain motion in the Ising-Glauber model. Surviving domains are marked by +,
annihilated domains by —. The domain number at a later time is also indicated.

results will also strongly suggest that the exponent y is nontrivial, i.e., it
cannot be extracted from so-far known exponents associated with the Ising
model.

In principle, a surviving domain may undergo coalescence with other
similar phase domains. Thus, a natural generalization of the domain survival
probability is Q,,(¢), the density of domains composed of m original domains
(see Fig. 1). This quantity satisfies the initial condition Q,(0)=4,, ,. The
total domain density, N(t), is given by N(t) =3, 0,.(t), while the domain
survival probability counts initial domains that have not shrunk and hence
contains the density Q,.(f) with weight m

S(t) =Y. mQ,,(1) (2)

The average number of domains contained within a surviving domain
{m(t)) = S(t)/N(t) grows algebraically according to (m(t)> ~¢*~¥ with v
the domain decay exponent, N(t)~t~". If the behavior of Q,(¢) is truly
self-similar, it should follow the scaling form

Q1) =142 9(mt* ") (3)
The scaling function 2(z) exhibits the following extremal behavior

z7 z<x 1
exp(—xz*) z>> 1

2z)~ { 4)

The small argument tail describers domains that contain a very small
number of initial domains. In particular, the quantity

0\()~17? (5)
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is of special interest: It gives the density of domains which avoided merging
with their neighboring domains up to time 1.

The inequalities Q,(¢) <3, 0..{t) <Y ,, mQ,.(t) lead to the bounds
¥ <v<d. Taking into account that at least one surviving domain sur-
rounds a persistent spin gives P(t) < .S(¢), where P(t) ~ 1 =% is the density of
persistent spins. Thus we arrive at another upper bound < 8 for the expo-
nent . These bounds suggest that the domain decay rate is the slowest in
the problem. We shall show below that these bounds are strict for the Ising
model and more generally for the g¢-state Potts model. However, for the
Potts model with ¢ — 1 or ¢ — oo, and for a few other models®®® some of
these exponents are equal to each other.

A useful relation between the scaling exponents can be obtained by
substituting m=1 in Eq. (3)

S—v=(v—y)1+0) (6)

Thus, among the three exponents ¥, J, and o, only two are independent.
It is well known that under nonconserved (conserved) dynamics v=1/2
(v=1/3).1

Quite obviously, domains disappear when their size vanishes, and
therefore the domain size and number distributions are intimately related.
Thus, domain survival properties involve the distribution of domains of
size n consisting of m original domains at time 7, denoted by P, (). The
aforementioned number distribution is Q,(f)=3%, P, (1), and conse-
quently, the domain survival probability is S(¢) =3, ,, mP, ,(¢).

As will be seen later, studying the joint size-number distribution
requires detailed knowledge of the domain size distribution P,(f)=
Y-m P, m(t). This distribution obeys the normalization conditions

1= nP, (1), N)=Y P,1) (7

Length conservation implies the first relation, while the second relation
gives the total domain density. Since the average domain length grows as
n~t*, the length distribution follows the scaling form

P (1)~ t">P(nt™") (8)

All of the above scaling behavior emerges from the approximation detailed
below. Furthermore, it is satisfied by the simulation data. In the next sec-
tion, we develop an approximation scheme that helps elucidate many of the
qualitative and quantitative features of the domain size and number distri-
butions.
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ill. NONCONSERVED GLAUBER DYNAMICS

We start with the 1D Ising model subject to T=0 Glauber
dynamics.(?¥ To examine the role of the number of equilibrium phases we
also consider a generalization of the Ising model the g-state Potts model.
In higher dimensions, the g-state Potts model is relevant to physical situa-
tions for g =2 (the Ising model) and additionally for g =3, 4, ©.®” For
instance, the g = oo case describes several cellular structures®® including
polycrystals,® foams,® soap froth,*® and magnetic bubbles.*"

We consider uncorrelated initial conditions where each of the ¢ phases
is present with equal density 1/g. The T'=0 Glauber-Potts dynamics
proceeds by selecting a spin at random and changing its value to that of
one of its randomly selected neighbors. Thus, domain walls perform a ran-
dom walk and upon contact, they annihilate or coalesce, depending on the
state of the corresponding domains.*>**) Identifying a domain wall with a
particle, (4), and absence of a domain wall with a hole (0), one finds the
single-species diffusion-reaction process

A0=2204, A4V, 00, A44ZWE-D 400 or 04
(9)

The rates indicate the relative probabilities by which each event occurs.

A. Domain Size Distribution

Ignoring correlations between neighboring domains allows us to
develop an approximate theory for the time-evolution of the domain dis-
tribution. Approximations that are similar in nature proved useful in
studies of related reaction-diffusion processes.?! 32 3%

The joint number distribution requires knowledge of the length dis-
tribution and we start by deriving a master equation for P,(¢). Under the
assumption that the lengths of neighboring intervals are uncorrelated, we
write the following rate equation®®

dpP,
dt

S N
(g—1) N?

-2
=Py + Py~ 2P+ 5 PiPn_l_i—N<Pn+Pn_1)]

i=1

(10)

with N(¢)=Y, P,(t) the total domain density and the boundary condition
Py(t)=0. The first three terms reflect that domain walls perform a random
walk with hopping rate set to 1/2 without loss of generality. The last two
terms are due to domain annihilation: the convolution term accounts for
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domain merger and the last term for domain loss. In the g-state Potts
model collision of domain walls results in annihilation with probability
1/(g — 1) or in coalescence with probability (¢ —2)/(g—1). Only annihila-
tion events affect the domain distribution and thus the 1/(g — 1) prefactor
of the annihilation terms. Using the sum rules of Eq. (7), one verifies that
the total length is conserved and the total domain density decays according
to the exact rate equation

e —p (11)

The diffusion term in Eq. (10) implies {n(¢)) ~ ¢'/2, and since {(n) ~
N~! the correct decay exponent v=1/2®¥ is recovered. In the following,
we will need to determine the asymptotic prefactor 4, N(t) ~ At™'2, A=
{ dx2(x), with the scaling function 2(x) defined according to Eq. (8). The
density rate Eq. (11) implies P, ~ 2'(0) =32 with 2'(0) = 4! 4.

A quantitative analysis of Eq. (10) may be carried by treating the
variable n as continuous. The quantity 2(x) satisfies

1 q—2 1
PN — L . S— R =
P +2(x9’) + 2 ‘@+2qu*9 0 (12)

where 2 =dP/dx and 2 xP={;dy P(y)P(x—y). The normalized
Laplace transform of the scaling function 2(x), p(s) =4 ! 53° dx e —*P(x),
obeys

dp_p* < q—2> g—1
Lol g4 Sy p L |
ds qs+ - qs p gs (13)

subject to the boundary condition p(0)=1. The transformation p(s)=

1 — gs* — gs(d/ds) In y(s) reduces the Riccati Eq. (13) into the parabolic
cylinder equation,

d2
—y+<l+§—s2>y=0 (14)

The solution to (14) reads y(s)=C_ D,(—s \/5)+C+D|,q(s ﬁ), with
D,,(x) the parabolic cylinder function of order 1/¢.%® The large s
behavior of p(s), p(s) =~ %s”, implies C_ =0, and we get

d
p(s)=1-qs*~gs—In Dy(s /2) (15)
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The normalization condition Y, nP,(¢) =1 can be reduced to Ap'(0)= —1.
This allows us to determine the constant

_ I1-1/24]
T IT12—1/2q] (16)
where I denotes the gamma function. In deriving (16) we have used the
properties®

D (x)~ xexp(—x*/4)[ 1+ 0(x~?)] (17)
and
rl2per Ve g2+
D (0) T2y D{0) = T (18)

The value of the constant A predicted by the IIA may be compared to
the exact one, Ao =(1—¢"")//7.%® In the extreme cases of g=1 and
g = oo the prefactor A is exact. The mismatch is worst (roughly 20%) for
the Ising (¢ =2) case where A =1I(3/4)/I'(1/4)=0.337989 while A4.,,=
(4r)~12=0.28209.%

The ITA predicts the correct qualitative behavior of length distribution
in the limits of small and large intervals

i(q—_llx x<xl
P(x) ~ 29 (19)

qA exp(—1x) x> 1

The linear small size behavior is seen from the large s behavior p(s) ~
(g—1)/(2g) s~2. On the other hand, the exponential tail follows from the
behavior of the Laplace transform p(s) ~ gA/(s + 4) near its pole at negative

= —4, given by the first zero of D,,(—4 ﬁ) =0. For the Ising case one
has A=0.5409. This value should be compared with the exact value
A={(3/2)/4\/7—z=0.368468 obtained by Derrida and Zeitak®” and the
approximate value 4 =0.35783 obtained by Alemany and ben-Avraham.®%

B. Domain Size-Number Distribution

We are now in a position to tackle the joint size-number distribution,
P, .(t), which captures both the spatial and “historical” characteristics of
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the coarsening domain mosaic. The corresponding rate equation is a
generalization of Eq. (10)

dP P,
nm_ p Poyim— 2Pt ———
df n-l,m+ n+l,m n,m+(q_1)N2
x‘:zPi,an—l—i,m—j_N(Pn,m+Pn—l,m)] (20)
iLj

with the initial condition P, ,(0)=4, ,d, , and the boundary condition
Py ,.(t) =0. The variable m is almost mute as it appears in a nontrivial way
only in the convolution term. One should verify that this master equation
is self-consistent. First, by summing over m, we recover Eq. (10). Second,
it implies that the domain survival probability satisfies the exact linear
equation dS/dt= —Y,, mP, ..

We have not succeeded in solving for the joint distribution. Neverthe-
less, it is possible to obtain analytically many interesting properties of
Egs. (20), including the scaling exponents. Given Egs. (20) are recursive
in m, one can try to solve for P, (t), then for P, ,(), etc. A solution for
the former quantity already allows to determine the scaling exponent J.
Thus let us consider the distribution of domains which have not merged
with other domains up to ¢, R,(¢) = P, ,(¢). For such domains, the convolu-
tion term vanishes and they evolve according to the linear rate equation

dR P,
~ = R —2R,——— (R, +R 21
dt Rn—l+ n+1 n (q_l)N( n+ n—l) ( )

with the initial condition R,(0)=d,, and the boundary condition
Ry(£)=0. In the continuum limit we again replace R,_, + R, — 2R, by
0*R/on? and R, + R, _, by 2R, to find a diffusion-convection equation for
R,(1). The transformation R, — R,N%7 reduces this equation to the diffu-
sion equation for R,, which is solved to yield R,(f) >~ N9t~ %R(nt~'7),
with Z(x) = x exp( —x2/4)/ﬁ. The total density of unreacted domains is
0(1)=3, R, ~t~VD~WD which gives the decay exponent

I 1
5=§+; (22)

Obtaining the second independent exponent ¥ is more involved. The
natural approach, ie., a direct investigation of the domain number dis-
tribution Q,,, appears to be useless, as it requires knowledge of P, ,, and
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hence the entire P, ,,. The domain survival probability can be alternatively
obtained by considering U,(t)=3, mP, (). This quantity obeys

2

dU, P i
" "_1+U,,+1—zun+—‘[z S UL,y i N(Uyp+ Un_l)]

dt

(g—1)N?

i=1

(23)

obtained by summing Eqgs. (20). We write U,(¢) in a scaling form
U,(t) = t~¥~Y29(nt~12). Asymptotically, the domain survival probability
reads S(¢) ~ Bt™¥ with B ={ dx %(x). The scaling distribution satisfies

1
%"+l(x%)’+<1//—l>%+—%*9’=0 (24)
2 q qA

The normalized Laplace transform of the scaling function #(x), u(s)=
B~ & dx e~*(x), obeys

—1
d—“=2<————”(s)+q'p +s>u—% (25)
ds qs s
and u(0)=1. In deriving (25) we used the relation %'(0)= By, found by
integration of Eq. (24), combined with A ={dx%(x). Substituting the
explicit expression (15) for p(s) into Eq. (25), and solving for u(s) yields

u(s) =245 D (s \/2) jw drr¥-1D2 (r /2) (26)

This solution is consistent with the anticipated s— oo behavior, u(s) ~
¥s~2 Furthermore, evaluating Eq. (26) near the origin gives u(s)=
14+ F() s + Cs+ . --. Therefore, for #/(s) to be finite near s =0, we must
have F(i)=0. Evaluating F(y) gives

0=L dr r=2 Dy(r) Di(r) (27)

an eigenvalue problem that can be solved numerically to obtain the expo-
nent Y (see Table I). In the most interesting case of integer ¢ the domain
decay exponent y appears to be irrational, in contrast with d.

It is useful to consider the limiting cases that turn out to be solvable.
The g = oo limit is especially simple®®? as only domain walls coalesce but
cannot annihilate and thereore Eq. (20) is linear and thus exact. Further-
more, the domain size number distribution factorizes, P, ,,=P,(t)3,, 1,
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since similar phase domains never coalesce and therefore the domain number
is trivial, m=1. Thus N(t)=S()=Q,(t) ~(nz)~"? and v=y =5=1/2.
Additionally, the scaling function is 2(x) = x exp( — x%/4)/\/.

Before going to the opposite limit g — 1, we first note that the Potts
model with arbitrary ¢>1 can be mapped onto the Ising model with
magnetization u =2/g — 1. Thus the ¢ — 1 limit corresponds to the vanishing
volume fraction of minority domains. Therefore minority domains cannot
“meet,” so majority domains change appreciably only due to coalescence.
Thus they never disappear, ie., S(¢t)=1 and ¥ =0. A majority domain
remains unreacted if both its minority neighbors survive, implying Q,(¢) =
N?%(t) and 6 =2v=1. In the above rate equation description, the diffusion
term becomes negligible and the ITA is exact. The scaling functions 2(x)
and 2(z) are identical exponential functions. However, unlike the g= oo
case, the joint distribution is not a product of the single function
variables.®® The joint size-number distribution still obeys the scaling law,
P, (1) ~17*D(x, y), with D(x, y)=x""?exp(—x— y?/2x). The scaling
variables x and y are quite unusual, though.®® 2% Indeed, instead of the
naive scaling variables mt =2 and nt~'2, one has x = (m+ n)(nt)~'? and
y = (m—n)(nt)~ 42 The former scaling variable x is just the sum of the
naive scaling variables, while the latter “diffusive” scale y is hidden. This
suggests that generally for the g-state Potts model with ¢ < o the joint dis-
tribution is not necessarily the product of single variable functions and the
scaling, if holds, may be rather different from the naive form with scaling
variables nz = and mt¥ "

C. Simulation Results

To test the ITA predictions, we performed numerical simulations on a
spin chain of size L = 10”. Random initial conditions and periodic bound-
ary conditions were used. The simulation data represents an average over
10 different realizations. For the Ising case, we found the exponent values
Y =0.126(1) and 6 =1.27(2) (see Fig. 2). These values should be compared
with the IIA predictions of =0.136612 and d=1. The IIA neglects
correlations that do build up between neighboring domains and thus is not
exact. Furthermore, the effects of the correlations is nontrivial, as one
exponent is smaller than predicted while the other is larger. As was the case
for the persistence exponent, 6, the domain exponents strongly depend on g.
Numerical values of the exponents yy and J are summarized in Table I
for representative values of ¢g. As g increases, the approximation improves
and eventually becomes exact for the extreme case g = 0. Thus, ¥ is over-
estimated by up to 10% and ¢ is underestimated by up to 25%.
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Fig. 2. Monte Cario data for the Ising-Glauber model. The domain survival probability
S(r), the domain density N(z), and the density of unreacted domains Q,(¢) are shown (top to
bottom). The inset plots the local slope —dIn S(1)/d In t. Typically, it is stable over a large
temporal range, and thus can be used to find the scaling exponents and to estimate the error,
typically of the order 0.001.

We performed several checks to verify that the asymptotic behaviors
of Egs. (1) and (5) are robust. For example, they are independent of the
initial domain wall concentration (provided that the correlations in the
initial condition are short range). We conclude that v and ¢ are nontrivial
exponent, i.c., they cannot be extracted from the known exponents asso-
ciated with the Ising-Glauber model. Similar to the persistence exponent,

Table I. Domain Exponents for the g-State Potts Model in One Dimension

MC Eq. (20)

q v 4 o ¥ J

2 0.126 1.27 1.05 0.136612 i

3 0.213 0.98 0.67 0.231139 5/6
4 0.267 0.85 0.50 0.287602 3/4

8 0.367 0.665 0.24 0.385019 5/8
50 0.476 0.525 0.03 0.480274 13/25
o0 12 12 0 12 12

“ Local slopes analysis was applied to the simulation data. The theoretical y is from Eq. (27)
and 6=1/2+1/q.
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f(q), the exponents appear to be irrational except for the limiting cases
g=0 (y=0=1,0=0) and, maybe, for g=2 (y =4,6=3,0=1).

The numerical simulations also confirm that the distribution function
0,.(t) scales according to Eq. (3). The scaling function .2(z), defined in
Eq. (4), decays exponentially for large argument (x4 = 1) and is algebraic for
small argument. The scaling relations combined with the simulation values
give ¢ =1.05(5). This is consistent with the linear behavior seen in our
simulations for z << |. Comparing with Eq. (19), we conclude that similar
scaling functions underlie the domain number and size distributions in the
g =2 case.

On the other hand, direct numerical integration of Eq. (20) reveals a
number distribution, Q,(¢), that scales according to Eq. (3), and has an
exponential tail in agreement with the simulation results. Moreover, the
emerging S(¢) falls within 5% of the actual survival probability over a
significant temporal range, f <103 In summary, in addition to predicting
the correct scaling behavior, Eq. (20) provides a good approximation for
many quantitative features of the domain distribution, and in particular,
good estimates for the decay exponents.

IV. CONSERVED KAWASAKI DYNAMICS

We turn now to applying the above methods to the conserved coun-
terpart, the spin-exchange Kawasaki dynamics,®® which describe spinodal
decomposition in binary alloys and phase separation in binary liquids.
Although some qualitative features are known,***!) theoretical under-
standing of the Ising-Kawasaki model is still far from complete even in one
dimension. In the following we limit ourselves to the two-phase Ising case.

A. Reduction to Domain Diffusion

We start by formulating the appropriate zero-temperature limit of the
Ising-Kawasaki model. Consider a two-phase system, e.g., the Ising model
(spins up and down) or a binary alloy (atoms of type 4 and B). At zero
temperature energy raising transitions are forbidden and only two moves
are allowed: the energy-decreasing “coarsening” transitions AB4AB — AABB
and the energy-conserving “diffusion” transitions ABAA — AABA. This
dynamics ultimately drives the system to a frozen configuration consisting
of strings of alternating domains each of length >2 which could not evolve
further.“?) This “jamming” behavior arises from the nonergodic nature of
the zero-temperature Kawasaki dynamics and it is a robust one: It is inde-

pendent of the relative transition rates,“*4% as well as the spatial dimen-
sion, (4% 44 45)
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Thus, to recover sensible coarsening, one must consider the zero-tem-
perature limit. Let us assume that temperature is positive; when it is suf-
ficiently low, T<<J where J is the exchange coupling, the correlation
length & ~ ¢”/T is very large and therefore the system exhibits coarsening as
long as the mean domain size is small compared with the correlation
length. Below, we focus on this intermediate-time regime where the descrip-
tion is drastically simplified.®* 4%’ We assume that the initial stage has been
already completed so that single-spin domains disappeared. Coarsening
will occur only when a spin splits off a domain wall and penetrates a
neighboring domain (say of size L). The splitting process occurs with a
very small rate exp[ —4J/T]. Then, this spin diffuses inside the domain
until it is eventually adsorbed by its boundaries. The corresponding
probabilities are well-known from elementary probability theory.® The
spin will be absorbed by the boundary from which it was issued with prob-
ability 1 —1/L. This spin may also be absorbed by the opposite boundary
resulting in a one lattice site hop of the entire domain. Thus, the hopping
rate is L~!' exp[ —4J/T]. Resealing time, 1 — ¢ exp[ —4J/T], the spin diffu-
sion will proceed with a huge rate exp[4J/T] and it therefore may be
treated as instantaneous while domain hops proceed with a finite rate
reciprocal to the domain size.

Thus, the appropriate zero-temperature limit of the Ising—Kawasaki
model is realized by taking the limits of infinite “physical” time 7, — 0,
while keeping the modified time ¢ =, exp[ —4J/T] finite. Hence, entire
domains perform a random walk with rate inversely proportional to their
lengths (we ignore an anomaly concerning domains of length 2 as it is
irrelevant asymptotically). Heuristically, it may be argued that as diffusion
is the primary coarsening mechanism the following scaling for the average
domain size, L ~\/E, holds. However, since the diffusion coefficient and
the domain size are reciprocal, D~ L~!, we obtain L ~ (' in agreement
with the well-known behavior of systems with conserved scalar order
parameter.!

B. Domain Size Distribution

For simplicity, we consider the case where the two equilibrium phases
are equivalent, as is the case for random initial conditions. Modifying
Eq. (10) to account for domain diffusion, and assuming neighboring domains
are uncorrelated, the domain size distribution evolves according to

dP,
dr

P
=L YP,_,-2P,+ P"“HN%[ Y i7'P,P,—N(n! +L“)P,,]
i+j=n

(28)
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with the domain density N and the inverse average domain size L'
defined via

o« 3 3 Z n-lP
— 1 _ 1 — n n 9
N ngl P"’ L <n > Zn Pn (2 )

The diffusion term in Eq. (28) accounts for change in » due to hoping of
a neighboring interval. The convolution term accounts for gain due to
domain merger, and the last two terms represent loss due to domain colli-
sion or domain merger. This rate equation conserves the total length,
>, nP,=1, and summation over n shows that the total domain density
evolves according to N= —2L"'P,.

The length distribution scales according to Eq. (8), P,(t)=~
t=>%P(nt "), with the correct scaling exponent v=1/3. By inserting that
scaling form into Eq. (28) we arrive at an integro-differential equation for
2(x) which is very cumbersome as it involves yet unknown moments of the
distribution. We thus resort to numerical integration of Eq. (28). The
results compare well with Monte-Carlo Simulations of the Ising-Kawasaki
model (see Fig. 3). For example the estimate for the asymptotic prefactor
A (defined via N(t) ~ A¢~'73), falls within roughly 5% of the actual value:
Apec=0.441 +0.001 while 4, =0.415 4 0.005.

0.40 — T T —

— MC
---- 1A

0.30 ]

0.10

0'000.0 200.0 400.0 600.0 800.0 1000

t

Fig. 3. Domain density in the Ising—Kawasaki model. The Monte Carlo simulation data
(MC) represents an average over 10 systems of size 10°, The IIA was obtained by integrating
Eq. (28) numerically.
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The length distribution emerging from the IIA has the same limiting
behavior as in the nonconserved case, ie., it is linear at small » and
exponential at large n. While the former agrees with our simulation results,
there is a disagreement for the latter. Our data is consistent with a
Gaussian tail, i.e., 2(x)~exp(—x?), for x> 1.

C. Domain Size-Number Distribution

Given the results in the conserved case, it is natural to study the
domain exponents and to examine the usefulness of the IIA approach in
the conserved dynamics case. In analogy with Eq. (20), the master equation
for the domain size-number distribution is written

2,

dP, ,,
dr N?

ar =L_1(Pn—l,m—2Pn.m+Pn+l,m)+

x[ )IEEDY i“P.-,kP,,z—N(n-'+L—‘)Pn_,,,} (30)

i+ je=n k+l=m

Summing the above equations over m, we indeed recover Eq. (28) for the
length distribution.

To determine the exponents, it is again simpler to consider the dis-
tributions R,(¢) and U,(¢) instead of the joint distribution P, ,(¢). The
density of single parent domains, R,(f)= P, (¢), evolves according to the
linear rate equation similar to Eq. (21)

dR, _ P _ _
—=L ‘(Rn+.+Rn_l—2R,,>—W‘(n '+ L YR, (31)

We expect that the distribution R,(f) scales according to R,(f)~
1=9=V3%(nt~'?). Integrating this equation we get Q,(¢)=3 R, (t)~1t~?
with 6 2 0.645. On the other hand, Monte-Carlo simulations of the domain
diffusion process give d 0.705 (see Fig. 4).

The domain survival probability can be found by using the auxiliary
function U,(7) =Y., mP, ,(t) which satisfies the analog of Eq. (23)

au, P
_71I—=L I(Un+l+ Un——l_zUn)'*'Flz

X[Z Y i“lP,.Uj—N(n'lﬂ-L“)U,,] (32)

i+j=n
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Fig. 4. Monte Carlo data for the Ising-Kawasaki model from the same simulation as in
Fig. 3. The domain survival probability S(¢), the domain density N(z), and the density of
unreacted domains Q,(t) are shown (top to bottom).

This distribution U,(¢) should scale according to U, (1)~ ¢ ¥~ "3 (nt~"?).
The domain survival probability S(¢) =3, U,(t) then decays according to
S(t)~t™

Again, the agreement with the simulation is remarkable. Numerical
integration data give an estimate of i ~0.147 while Monte-Carlo simula-
tions (see Fig. 4)) give y = 0.130. We also verified that the scaling relations
of Egs. (3) and (4) are satisfied by the 1A as well as the simulation data.
We conclude that in the Kawasaki case as well, nontrivial exponents
characterize domain statistics. Furthermore, the approximate approach
reproduces most qualitative features of the domain size and number dis-
tribution, and provides good estimates for the scaling exponents.

We now describe how to obtain y in the limit where one of the two
phases occupies a vanishing volume-fraction. Denote by L ,(z) and Lg(t)
the average sizes of minority and majority domains, respectively. They both
grow as t'? but remain greatly different throughout the evolution,
L,<<Ly. The domains diffusion rates, D,~L;' and Dy~ L', thus
greatly differ as well: D, >> D,. In principle, two neighboring minority
domains can overtake a separation distance of order L, and coalesce; this
requires the coalescence time 7.~ L%/D,~ L, L%. On the other case, a
minority domain can shrink due to diffusion of neighboring majority
domains; this requires the shrinking time ¢, ~ L% /D g~ L% L. We see that
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t,<<t,, so we should just take into account the shrinking of minority
domains.

Thus majority domains do not disappear, implying S(¢) =1 and y =0.
For the minority phase we anticipate ¢ =v = 1/3, while for the symmetric
case of equal concentrations i 2~ 0.130. This indicates that similar to the
nonconserved dynamics case, the domain exponents vary continuously as
the volume fraction is varied.

V. CONCLUSIONS

In summary, we investigated the one-dimensional Ising model subject
to zero temperature Glauber and Kawasaki dynamics. We introduced the
domain size-number distribution and showed that it obeys scaling and is
characterized by two independent nontrivial decay exponents. Similar to
the persistence exponent, these exponents are sensitive to the type of the
dynamics and the volume fraction of the (globally or locally) conserved
equilibrium phase. We also introduced an approximation which is based on
terminating the hierarchy of rate equations describing the domain density.
This approximation is very useful in predicting the qualitative nature of the
domain distribution as well as estimating important parameters including
the scaling exponents. In the proper T =0 limit of the Ising model with
Kawasaki dynamics, this approximation is especially useful as very little is
known analytically about the domain distribution.

It will be interesting to generalize the domain survival concept to
higher dimensions. At least for the g— oo limit of the Potts model,
domains are well defined, and such a generalization is possible. The non-
conserved dynamics can indeed be studied in this limit, and the domain
exponents Y =0 = J = d/2 (for d > 2) have been reported,®® consistent with
simulations®® and with experiments on d =2 soap froths.“®

Recently, it was pointed out that coarsening mosaics may be charac-
terized by more than one algebraically growing length scale, and that
morphologies consisting of domain and super-domains may exist.'” This,
together with the above results suggest that our current understanding of
such systems is only partial. Domain statistics indicates that several non-
trivial decay laws underlie the evolution of elementary processes such as
the nonequilibrium Ising model. These nontrivial exponents do not emerge
naturally from studies of traditional quantities such as spatiotemporal
correlations. It remains a challenge to find and obtain these underlying
“hidden” exponents from a more systematic method. It is also intriguing
whether an entire hierarchy or a finite number of independent decay modes
are present in these systems.
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